Partenaires

CNRS INPT UPS



Rechercher

Sur ce site


Accueil > Agenda > Thèse E. Tinon - 12 avril

Thèse E. Tinon - 12 avril

6 avril

Étude expérimentale des mécanismes d’atomisation effervescente. Application à la sécurité incendie dans les moteurs aéronautiques.

Soutenance de Thèse Emmanuelle Tinon

Jeudi 12 avril à 10 h 30 - Amphithéâtre Nougaro

Résumé :

Les incendies font partie des risques les plus redoutables en aéronautique, en raison des difficultés à les combattre, comme par exemple dans les espaces confinés où la propagation peut être très rapide. Le Halon1301 est utilisé depuis plus de 50 ans comme agent extincteur pour les moteurs d’avions, l’APU (Auxiliary Power Unit) et les applications de protection feux cargo. Le Halon1301 possède des propriétés spécifiques pour les systèmes de protection feux des moteurs. Il possède un point d’ébullition bas et une pression vapeur élevée, ce qui facilite le mélange de l’agent avec l’air de la ventilation dans les zones feux. De plus, son point d’ébullition à -57,8°C et sa capacité à se vaporiser à chaque point de décharge sont des propriétés physiques désirables.

Suite à des changements de la réglementation environnementale, il est nécessaire de remplacer le Halon1301, l’agent extincteur actuellement présent sur les systèmes de protection feux des moteurs d’avions. L’utilisation de cet agent a été bannie dans l’industrie par le protocole de Montréal (1994) et de Kyoto (1998) qui vise à réduire les substances qui appauvrissent la couche d’ozone ainsi que les gaz à effet de serre. Des dérogations établies par la Commission Environnementale Européenne existent et sont appliquées au domaine de l’aéronautique à cause du manque de solutions alternatives. Depuis plusieurs années, Airbus travaille sur le projet de remplacement du Halon1301, appliqué notamment aux systèmes de protection feux des zones moteurs et APU. Depuis 2003, plusieurs agents alternatifs au Halon1301 ont été identifiés. Dans notre cas, on s’intéresse à un candidat qui apparait comme une alternative intéressante respectueuse de l’environnement : le Novec1230TM. La différence la plus importante entre le Halon1301 et le Novec1230TM est leur phase physique. En effet, le Halon1301 est un gaz, alors que le Novec1230TM est liquide en conditions ambiantes (il est liquide en dessous de +49,2°C). Que ce soit à la température de ventilation froide (température négative) ou à l’ambiant (+25°C), l’agent sera liquide. Les caractéristiques d’évaporation (courbe de saturation) indiquent que pour ces applications, nous sommes dans un état diphasique avec la présence de gouttes et de gaz : plus le mélange sera froid et plus l’équilibre sera déplacé vers la phase liquide. En phase gazeuse, le transport de l’agent dans chaque recoin du moteur ne pose pas de problème car il sera transporté par l’écoulement d’air de la ventilation. Or, en phase liquide, le transport efficace de l’agent sous forme de gouttes est plus complexe : si les gouttes sont trop grosses, elles tendront à avoir une trajectoire balistique et n’atteindront pas toutes les zones feux du moteur. Par conséquent, l’optimisation de l’atomisation de l’agent devient un paramètre central pour la conception du système de protection des incendies.

Dans le contexte du projet, on étudie une technologie appelée atomisation effervescente. Le principe est de venir dissoudre un gaz (dans notre cas du dioxyde de carbone, CO2), dans l’agent liquide Novec1230TM. Plusieurs adaptations de cette technologie sont requises pour améliorer les performances de l’agent tel que son atomisation et son transport. Le processus d’atomisation effervescente est une technique d’atomisation diphasique prometteuse qui offre des améliorations potentielles en termes de qualité d’atomisation du fluide et de réduction de pression d’utilisation. L’objectif de ce projet est de conduire des recherches expérimentales sur le processus d’atomisation effervescente afin de prédire quels sont les paramètres clés qui influencent l’atomisation.

Jury :

  • Patrick GASTALDI (Rapporteur, HDR, Ing. RENAULT)
  • Jean-Charles SAUTET (Rapporteur, Pr, CORIA/Rouen)
  • Alain LINE (Examinateur, Pr, INSA Toulouse)
  • Rudy BAZILE (Directeur de thèse, MCF, INPT)
  • Stéphane PUGLIESE (Examinateur, Dr, Ing. AIRBUS)
  • Laurent SELLE (Co-Directeur de thèse, CR, CNRS IMFT)